DUO mXTEND™: TINY CHIP ANTENNA FOR SMART TRACKING DEVICES
DUO mXTEND™: TINY CHIP ANTENNA FOR SMART TRACKING DEVICES

- **Antenna component:** DUO mXTEND™ NN03-320
- **Dimensions:** 7.0 mm x 3.0 mm x 2.0 mm
- **Frequency regions:** 1561 MHz, 1575 MHz, and 1598 MHz to 1606 MHz

This is DUO mXTEND™ for GNSS: the tiny antenna booster enabling full geolocation with GNSS connectivity (GPS, GALILEO, GLONASS, BeiDou) while minimizing the real estate use on your circuit board (no clearance beyond the component’s footprint).

We understand your tracking device needs to be small while you still need to provide an optimum GNSS connectivity to locate it. Therefore, DUO mXTENDTM (NN03-320) antenna booster for GNSS delivers full GNSS performance while fitting into about every tracking device owing to its tiny form factor: only **7.0 mm x 3.0 mm x 2.0 mm**. In addition, since DUO mXTENDTM does not need any clearance on the PCB ground beyond its antenna footprint, you can use the proximity area nearby the component to arrange other elements in the PCB, reducing the size of the overall tracking device. Featuring an omnidirectional radiation pattern, your device will be tracked, no matter its attitude and orientation with respect to the satellite constellation, making of DUO mXTENDTM your ideal component for portable, handheld and wearable tracking devices.
TABLE OF CONTENTS

1. **PRODUCT DESCRIPTION NN03-320**

2. **EVALUATION BOARD GPS/GALILEO/GLONASS/BeiDou**

 2.1. **QUICK REFERENCE GUIDE**
 2.2. **EVALUATION BOARD**
 2.3. **MATCHING NETWORK**
 2.4. **VSWR AND TOTAL EFFICIENCY**
 2.5. **RADIATION PATTERNS (1561-1606 MHz), GAIN, AND EFFICIENCY**
1. PRODUCT DESCRIPTION NN03-320

The DUO mXTEND™ antenna booster has been specifically designed for providing worldwide Global Navigation Satellite Systems (GNSS) performance in wireless devices with small space requirements. It is a miniature antenna capable of being adapted, with a high level of flexibility, to the antenna designer needs. It presents high antenna efficiency values and its size is much smaller than traditional patch antenna solutions and its pattern is not directive, so satellite signals are tracked regardless of the relative position, attitude and orientation of the tracking device. The DUO mXTEND™ antenna booster does not require further clearance area beyond its reduced footprint, making it an ideal alternative to larger custom antennas in for small and portable tracking devices.

Material: The DUO mXTEND™ antenna booster is built on glass epoxy substrate.

APPLICATIONS
- GPS/GALILEO/GLONASS/BeiDou modules
- Smart tracking devices
- Sport navigators
- Handsets and smartphones
- Tablets
- Digital cameras
- Smartwatches and wearables

BENEFITS
- High efficiency
- Small size
- Cost-effective
- Easy-to-use (pick and place)
- Off-the-Shelf standard product (no customization is required)
- No clearance beyond footprint.

The DUO mXTEND™ antenna booster belongs to a new generation of antenna solutions based on Virtual Antenna™ technology owned by Ignion. This technology enables replacing conventional and custom antenna solutions by a new class of so-called antenna boosters, delivered in the form of a new range of miniature and off-the-shelf chip antenna components.
2. EVALUATION BOARD
GPS/GALILEO/GLONASS/BeiDou

2.1. QUICK REFERENCE GUIDE

<table>
<thead>
<tr>
<th>Technical features</th>
<th>1561 MHz</th>
<th>1575 MHz</th>
<th>1598 – 1606 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Efficiency</td>
<td>> 60 %</td>
<td>> 70 %</td>
<td>> 60 %</td>
</tr>
<tr>
<td>Peak Gain</td>
<td>1.6 dBi</td>
<td>1.8 dBi</td>
<td>1.1 dBi</td>
</tr>
<tr>
<td>VSWR</td>
<td>< 2.5:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation Pattern</td>
<td>Omnidirectional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarization</td>
<td>Linear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (approx.)</td>
<td>0.11 g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>-40 to +125 ºC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impedance</td>
<td>50 Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions (L x W x H)</td>
<td>7.0 mm x 3.0 mm x 2.0 mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 – Technical Features. Measures from the Evaluation Board. See Figure 1.

2.2. EVALUATION BOARD

This Evaluation Board EB_NN03-320-m-GNSS integrates a UFL cable to connect the DUO mXTEND™ antenna booster with the SMA connector. The DUO mXTEND™ provides operation in three frequency regions, 1561 MHz (BeiDou E1 band), 1575 MHz (GPS L1 band and GALILEO E1) and from 1598 MHz to 1606 MHz (GLONASS L1 band), through a single input/output port.

<table>
<thead>
<tr>
<th>Measure</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>80</td>
</tr>
<tr>
<td>B</td>
<td>40</td>
</tr>
</tbody>
</table>

Tolerance: ±0.2 mm

Material: The evaluation board is built on FR4 substrate. Thickness is 1 mm.

Figure 1 – EB_NN03-320-m-GNSS. Evaluation Board providing operation at BeiDou E1 band (1561 MHz), GPS L1 band and GALILEO E1 band (1575 MHz), and GLONASS L1 band (from 1598 MHz to 1606 MHz). Notice that the clearance area is equal to the DUO mXTEND™ footprint.
This product and/or its use is protected by at least one or more patents and patent applications. Please check related patent information at: Ignion patents.

2.3. MATCHING NETWORK

DUO mXTEND™ needs a matching network to connect to your GNSS receiver. This section describes in Figure 2 a suitable matching network for DUO mXTEND™ and the resulting product specs when measured in the reference evaluation board (EB_NN03-320-m-GNSS) described in the previous section. Please note that different tracking devices with different form factors, RF ground planes and nearby components may need a different matching network. If you need assistance to design your matching network beyond this application note, please contact support@ignion.io, or try our free-of-charge **NN Wireless Fast-Track** design service, you will get your chip antenna design including a custom matching network for your device in 24h\(^1\). Other related to NN’s range of R&D services is available at: https://www.ignion.io/rdservices/

<table>
<thead>
<tr>
<th>1.4 pF</th>
<th>GJM1555C1H1R4WB01</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4 pF</td>
<td>GJM1555C1H5R4WB01</td>
</tr>
</tbody>
</table>

Figure 2 – Matching Network implemented in the evaluation board (Figure 1).

To ensure optimal results, the use of high-quality factor (Q) and tight tolerance components is highly recommended (e.g. Murata components with part numbers as in Figure 2). The antenna performance is always conditioned by its operating environment so that different devices with different printed circuit board sizes, components nearby the antenna, LCD’s, batteries, covers, connectors, etc. affect the antenna performance. Accordingly, it is highly recommended placing pads compatible with 0402 and 0603 SMD components for a matching network as close as possible to the feeding point of the antenna element. Do it in the ground plane area, not in the clearance area. By tuning the matching network in your final design with your final surrounding components (batteries, displays, covers, etc.) you will be able to optimize the antenna performance without changing the antenna part.

\(^1\) See terms and conditions for a free NN Wireless Fast-Track service at: https://www.ignion.io/fast-track-project/
2.4. VSWR AND TOTAL EFFICIENCY

VSWR (Voltage Standing Wave Ratio) and Total Efficiency versus Frequency (GHz).

Figure 3 – VSWR and Total Efficiency for BeiDou E1 band (1561 MHz), GPS L1 band and GALILEO E1 band (1575 MHz), and GLONASS L1 band (1598 – 1606 MHz) (from the evaluation board (Figure 1)).
2.5. RADIATION PATTERNS (1561-1606 MHz), GAIN, AND EFFICIENCY

<table>
<thead>
<tr>
<th></th>
<th>Measurement System Set-Up Evaluation Board in Plane XY</th>
<th>$\theta = 90^\circ$ Plane XY at 1.561 GHz, 1.575 GHz and 1.602 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi = 0^\circ$ Plane XZ at 1.561 GHz, 1.575 GHz and 1.602 GHz</td>
<td>$\phi = 90^\circ$ Plane YZ at 1.561 GHz, 1.575 GHz and 1.602 GHz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Gain</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>BeiDou</td>
<td>1.6 dBi</td>
<td>64.9 %</td>
</tr>
<tr>
<td>GPS/GALILEO</td>
<td>1.8 dBi</td>
<td>72.1 %</td>
</tr>
<tr>
<td>GLONASS</td>
<td>Peak Gain: 1.6 dBi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average Gain across the band: 1.1 dBi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gain Range across the band (min, max): 0.7 <-> 1.6 dBi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak Efficiency: 66.2 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average Efficiency across the band: 63.4 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Efficiency Range across the band (min, max): 60.4 – 66.2 %</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 – Antenna Gain and Total Efficiency from the evaluation board (Figure 1) for BeiDou E1 (1561 MHz), GPS L1 band and GALILEO E1 band (1575 MHz), and GLONASS L1 (1598 – 1606 MHz) bands. Measures made in the Satimo STARGATE 32 anechoic chamber.
Ignion products and solutions are protected by Ignion patents.

All information contained within this document is property of Ignion and is subject to change without prior notice. Information is provided “as is” and without warranties. It is prohibited to copy or reproduce this information without prior approval.

Ignion is an ISO 9001:2015 certified company. All our antennas are lead-free and RoHS compliant.

ISO 9001: 2015 Certified

This project has received funding from CDTI under grant agreement IDI-20190285
Contact:
support@ignion.io
+34 935 660 710

Barcelona
Av. Alcaide Barnils, 64-68 Modul C, 3a pl.
Sant Cugat del Vallés
08174 Barcelona
Spain

Shanghai
Shanghai Bund Centre
18/F Bund Centre, 222 Yan’ian Road East,
Huangpu District
Shanghai, 200002
China

New Delhi
New Delhi, Red Fort Capital Parsvnath Towers
Bhai Veer Singh Marg, Gole Market,
New Delhi, 110001
India

Tampa
8875 Hidden River Parkway
Suite 300
Tampa, FL 33637
USA